a2 United States Patent

Motwani et al.

US009430336B2

US 9,430,336 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54) DISPERSED STORAGE NETWORK WITH
METADATA GENERATION AND METHODS
FOR USE THEREWITH

(71) Applicant: CLEVERSAFE, INC., Chicago, I,
(US)

(72) Inventors: Manish Motwani, Chicago, IL. (US);
Jason K. Resch, Chicago, IL (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 31 days.

(21) Appl. No.: 14/315,842

(22) Filed: Jun. 26, 2014

(65) Prior Publication Data
US 2014/0310492 Al Oct. 16, 2014
Related U.S. Application Data

(63) Continuation of application No. 12/886,389, filed on
Sep. 20, 2010, and a continuation-in-part of
application No. 12/080,042, filed on Mar. 31, 2008,
now Pat. No. 8,880,799, which is a
continuation-in-part of application No. 11/403,391,
filed on Apr. 13, 2006, now Pat. No. 7,546,427, which
is a continuation-in-part of application No.
11/241,555, filed on Sep. 30, 2005, now Pat. No.
7,953,937, said application No. 12/080,042 is a
continuation-in-part of application No. 11/973,542,
filed on Oct. 9, 2007.

(60) Provisional application No. 61/246,297, filed on Now.

25, 2009.
(51) Int. CL
GOGF 7/04 (2006.01)
GOGF 11/14 (2006.01)
GOGF 3/06 (2006.01)
HO4L 29/08 (2006.01)
GOGF 17/30 (2006.01)
HO4L 29/06 (2006.01)
GOGF 11/10 (2006.01)
GOGF 11/20 (2006.01)
(52) US.CL
CPC ... GOGF 11/1464 (2013.01); GOGF 3/065

(2013.01); GO6F 3/067 (2013.01); GO6F
3/0617 (2013.01); GOGF 3/0619 (2013.01);
GO6F 3/0635 (2013.01); GOGF 17/30867
(2013.01); HO4L 63/10 (2013.01); HO4L
67/1097 (2013.01); GOGF 11/1076 (2013.01);
GOGF 11/2038 (2013.01); GOGF 11/2048
(2013.01); GOG6F 2201/80 (2013.01); GO6F
221171028 (2013.01)

(58) Field of Classification Search
CPC ... GO6F 11/0709; GO6F 11/0751; GO6F
11/2094; GOG6F 11/1464; GOGF 3/0617,

GOG6F 3/0635; GOG6F 3/067, GOGF 67/1097,

GO6F 17/30867;, GOG6F 63/10; HO4L 67/1097

USPC ittt seneneaes 726/2
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
5485474 A 1/1996 Rabin
5,774,643 A 6/1998 Lubbers et al.
5,802,364 A 9/1998 Senator et al.
5,809,285 A 9/1998 Hilland
5,890,156 A 3/1999 Rekieta et al.
5,987,622 A 11/1999 Lo Verso et al.
5991414 A 11/1999 Garay et al.
6,012,159 A 1/2000 Fischer et al.
6,058,454 A 5/2000 Gerlach et al.
6,128,277 A 10/2000 Bruck et al.
6,175,571 Bl 1/2001 Haddock et al.
6,192,472 Bl 2/2001 Garay et al.
6,256,688 Bl 7/2001 Suetaka et al.
6,272,658 Bl 8/2001 Steele et al.
6,301,604 Bl 10/2001 Nojima
6,356,949 Bl 3/2002 Katsandres et al.
6,366,995 Bl 4/2002 Vilkov et al.
6,374,336 Bl 4/2002 Peters et al.

6,415,373 Bl 7/2002 Peters et al.

6,418,539 Bl 7/2002 Walker
6,449,688 Bl 9/2002 Peters et al.
6,567,948 B2 5/2003 Steele et al.
6,571,282 Bl 5/2003 Bowman-Amuah
6,609,223 Bl 8/2003 Wolfgang
6,718,361 Bl 4/2004 Basani et al.

(Continued)
OTHER PUBLICATIONS

Shamir; How to Share a Secret; Communications of the ACM; vol.
22, No. 11; Nov. 1979; pp. 612-613.

Rabin; Efficient Dispersal of Information for Security, Load Bal-
ancing, and Fault Tolerance; Journal of the Association for Com-
puter Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60
pgs.

Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes
and Matching Rules; IETF Network Working Group; RFC 4517,
Jun. 2006; pp. 1-50.

(Continued)

Primary Examiner — Krista Zele

Assistant Fxaminer — James Forman

(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A technique by a processing module of a computing device
of a dispersed storage network (DSN) to generate metadata
associated with a stored data object. Once the data object is
identified, a data segment of the data object is determined
and a number of data slices corresponding to the data
segment is retrieved. Then, the data segment is regenerated
from the retrieved data slices. Once the data segment is
regenerated, metadata that is associated with the data seg-
ment is generated and stored.

10 Claims, 11 Drawing Sheets

US 9,430,336 B2

Page 2
(56) References Cited 2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al.
U.S. PATENT DOCUMENTS 2007/0214285 Al 9/2007 Au et al.
2007/0234110 A1 10/2007 Soran et al.

6,760,808 B2 7/2004 Peters et al. 2007/0283167 Al 12/2007 Venters, III et al.

6,785,768 B2 8/2004 Peters et al. 2008/0270361 Al™* 10/2008 Meyer et al.c..coceeee. 707/3

6,785,783 B2 8/2004 Buckland 2008/0320384 Al* 12/2008 Nagarajan 715/255

6,826,711 B2 11/2004 Moulton et al. 2009/0094251 Al 4/2009 Gladwin et al.

6,879,596 Bl 4/2005 Dooply 2009/0094318 Al 4/2009 Gladwin et al.

7,003,688 Bl 2/2006 Pittelkow et al. 2010/0023524 Al 1/2010 Gladwin et al.

7,024,451 B2 4/2006 Jorgenson

7,024,609 B2 4/2006 Wo%fgang et al. . . .OTHER PUBLICATIONS

7080.101 Bl 7/2006 Watson ot al. Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-

7:103:824 B2 9/2006 Halford tionalized String Preparation; IETF Network Working Group; RFC

7,103,915 B2 9/2006 Redlich et al. 4518; Jun. 2006; pp. 1-14.

7,111,115 B2 9/2006 Peters et al. Smith; Lightweight Directory Access Protocol (LDAP): Uniform

7,140,044 B2 11/2006 Redlich et al. Resource Locator; IETF Network Working Group; RFC 4516; Jun.

7,143,107 B1* 11/2006 Nebres, Jr. ..ccoovvvrnenn. 707/603 2006; pp. 1-15.

7,146,644 B2 12/2006 Redlich et al. Smith; Lightweight Directory Access Protocol (LDAP): String

7,171,493 B2 1/2007 Shu et al. Representation of Search Filters; IETF Network Working Group;

7,222,133 Bl 5/2007 Rmpurkar et al. RFC 4515; Jun. 2006; PP 1-12.

;’%ég’éig g% ;ggg; (S:il;tltsef;fl' Zeilenga; Lig}_ltweight Directory Access Protocol_ (LDAP): Direc-

7:636:724 B2* 122009 de la Torfe of al. tory Information Models; IETF Network Working Group; RFC

8,117,155 B2* 2/2012 Chenetal. ... 707/637 4512 Jun. 2006; pp. 1-49.
2002/0062422 Al 5/2002 Butterworth et al. Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
2002/0087979 Al* 7/2002 Dudkiewicz et al. 725/34 for User Applications; IETF Network Working Group; RFC 4519;
2002/0166079 Al 11/2002 Ulrich et al. Jun. 2006; pp. 1-33.
2003/0018927 Al 1/2003 Gadir et al. Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
2003/0037261 Al 2/2003 Meffert et al. tication Methods and Security Mechanisms; IETF Network Work-
2003/0065617 Al 4/2003 Watkins et al. ing Group; RFC 4513; Jun. 2006; pp. 1-32.
2003/0084020 A1* 52003 Shu oo 707/1 Zeilenga; Lightweight Directory Access Protocol (LDAP): Techni-
2004/0024963 Al 2/2004 Talagala et al. cal Specification Road Map; IETF Network Working Group; RFC
2004/0122917 Al 6/2004 Menon et al. 4510; Jun. 2006; pp. 1-8.
2004/0153479 Al* /2004 Mikesell et al. 707/200 L O . .
5004/0215998 Al 10/2004 Buxton et al. Zeilenga; Lightweight Directory Access Protocol (LDAP): String
2004/0228493 Al 11/2004 Ma et al. Representation of Distinguished Names; IETF Network Working
2005/0100022 Al 5/2005 Ramprashad Group; RFC 4514; Jun. 2006; pp. 1-15.
2005/0114594 Al 5/2005 Corbett et al. Sermersheim; Lightweight Directory Access Protocol (LDAP): The
2005/0125593 Al 6/2005 Karpoff et al. Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
2005/0131993 Al 6/2005 Fatula, Jr. 1-68.
2005/0132070 Al 6/2005 Redlich et al. Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
2005/0144382 Al 6/2005 Schmisseur IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
2005/0229069 Al 10/2005 Hassner Xin, et al.; Evaluation of Distributed Recovery in Large-Scale
2005/0283645 Al* 12/2005 Tumer et al. ...c...cooovvvvnne 714/4 Storage Systems; 13th IEEE International Symposium on High
%882;8?;‘32; ﬁ} ggggg (S:}ilelﬂgiiieixazl Performance Distributed Computing; Jun. 2004; pp. 172-181.
5006/0156059 Al 7/2006 Kitamura ’ Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
2006/0224603 Al 10/2006 Correll, Jr. Persistent Storage; Proceedings of the Ninth International Confer-
2007/0074102 Al* 3/2007 Kraft et al. .ooooocivvvnn, 715/512 ence on Architectural Support for Programming Languages and
2007/0079081 Al 4/2007 Gladwin et al. Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.
2007/0079082 Al 4/2007 Gladwin et al.
2007/0079083 Al 4/2007 Gladwin et al. * cited by examiner

US 9,430,336 B2

Sheet 1 of 11

Aug. 30, 2016

U.S. Patent

T 'Ol

8T Hun
suiBeuew sqg

9¢ 2402
Sunndwoo

€ @oelaul |e

T W31SAs sunndwod

9€ uun sq
A
l_____
[87X A20us03 |
(X 1 H
| 77X 1201503 |

0Z 1un Suissaooud
Au891ul 28eI0)S

o 0o 0 = 9z 2402
|||||||||||||||||||||||| | Sunndwod
IEARETEER *
X | 78 avepe1u1 Nsa |
KAREETEER 1 0
000
L G s901|s

| 7 x 1201553 |@ee | TH1 1201553

T 201ARp Jasn

0€ 22epul

i

‘(F.,\(\u

| 87 x"A201s03 |eee | 37 1 A20UsD3

¥ Jdomiau

A 4

<

g7 2lod
Sunndwoo

07)do|q elep
Jo/g BE 3|y eyep

v“ OF 2oe91U| _ _

Z¢€ 9e03UI NSA |

i

i

_ F€ Suissadoud §q _

9¢ 2402 Suizndwoo

9T Hun Buissasoud sa

T S90I[S ——=

2

TE 2oeuduI NSA

A

A 4

¥E€ Buissaroud

sa

97 2402 Sunndwod

T 921A9p Jash

US 9,430,336 B2

Sheet 2 of 11

Aug. 30, 2016

U.S. Patent

<O
[
|
97 a|jnpow ¥Z 9|npow TL @|npow 23epeul 0L @|hpowl 89 a|npowl 9g s|npow
90e4J31UI NSA 92e8IUl aH ysels 9JBLIBIUI JJomIBU 9Je4J433Ul YEH 90BJI3IUI SN
A A A A A A

YVY VVY

TS yun Suissasoud
solydesd oaplia

|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
— 79 3|npow “
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|

|

I

I

1

I

I

I

“ 8G @0elR1UI [Dd 79

I

_ x SOId INOY
I A

I

" \ 4 A 4

“ J2 ommou < | P e > SYEH9
“ Il Ol Ol 39IA3P O
_ A

I

! y

I 75 Aowsw _ | TG4eq04u00 | 09 s|npow
“ ulew il Aowaw g Suissanoud
! y §

I

I

| A 4

I

I

I

I

I

I

I

US 9,430,336 B2

Sheet 3 of 11

Aug. 30, 2016

U.S. Patent

8F X A 921|s BIEp PBPOI JOLID € 'Ol4 9% T A 92J|S Biep popoI JoJId
aweu IS aweu adl|s
” _ ZE 20B4191UI 18USQ _ “
— [] —]
TT X T 221Is 1P PapOI JoUId] see | | TP T T33ls eiep papod.osse
2weu 301|S T — aweu ao1|S
8% X A 9lIs e1ep cee 9% T A ®ls e1EP
pPapod JoLID pPapod JolId _ T8 o|npow a3e01s _
awieu 301§ ° awieu 201§ A
[
— —_ . [—
v X T 90l|s elep cee cv T T 90l|s elep
papod Jodid papod Jodid
sweu 301|S sweu 901IS v
Z8 a|npow pud
sweu ereq | ased | usdynep | glynea | xspul 1S x
214199dS
UoI1eWJOU| SUIINOY |BSIBAIUN
1nea
7€ sweu 221|§ 0% walgo
— elep
76 A Judw3as eiep v
YY) 08 8|npow ssadoe gg aweu
x 12190
06 T 1usws3as ejep
GE alWeu 32InoS 98 di
Jasn
— <]
0F 192[qo e1ep — v 2| —
T 37 9|npow Aemaled t le————»
GE aWeu 3aJnos g
c
al sy _ AS _ uad ynep | gl ynea
ZE aWeU 924N05 7€ @Inpow Buissadosd 5a

US 9,430,336 B2

Sheet 4 of 11

Aug. 30, 2016

U.S. Patent

yoouserepd3 [¥q | “q|=q|eq|q|rq| @ | & | S 914

€ wu__m mu.m_u ok | omo_ cwﬁ_ NNO_ mﬂo_ wﬁo_ OHD co_ NO_

(o))

Z 1221Is <

galseiepd3 | g | g | g |tq|tq | g | g | 'q

TaoyseiepdI | q | g | % |fq | g | 8 | 'q | °q

[q|eee|q| “q| eee || eee |‘q|eee| g | |eee| g |
76 1uswW39s e1EP PIPOIUS JO SU] TE

¥ 'Ol
r-— - """ —-"—"—"—-—"—-"—-—"—-"—-- T T T T T T T T T e e
_ 78 a|npow pus _
_
I —
68 J01endivew — — €g Jorendivew |
<« < > J0I|s-2 < > J2pod2 < > :
_ -9p 9|[s-1sod £8 4931[5-9p 38 19pO39p | -9p 90|[s-a.d m [)
_ _ _
_ I I
_ €/ Mun |0J1U02 _u__:QE“ “
I
xoouserepda | | _ _
— I _
o | T8 Joieindiuew — — G/ Jore|ndivew
° <> : “—> 1901|S “—> opoous |G : >
e | 921|5-350d 6L 4390 LL o3P 221|s-a.4d _
T °91js e3ep 23 _ “. ||||||||||||||||| I

76 Jusw8as eiep papoous 76-06 1uswWsas eiep

US 9,430,336 B2

Sheet 5 of 11

Aug. 30, 2016

U.S. Patent

8 'O

J8)SeW 8AI0R WIIIU0D

223 1

o~
—

Jaseuw aAljoe a)eljobau

Q|
g
—

%

a|npow Buissasold g uoluedwod JeAoIsIp

Q|
—
—

)

£°914

uonaesue.) 910|dwod

asuodsal
2|geJloney

O
i
|

a|geJoaejun

aj0U

|

a|npow Buissagoid §q sS9008

B f

ss822e 0] 9|npow Buissasold g yaIym auiwiIe1ap

90T i

[No]
—

AlowaWw NS SS809. 0] auUIWIa1ep

|

vor)

Vit

9 'Ol

¢ Hun
Buissaso.d

Sa

A
Y

SE'T'891°C61

L yun
Buissaooud

Sd

YET'891°¢C6T

Yy v

201
90IABp Jasn

US 9,430,336 B2

Sheet 6 of 11

Aug. 30, 2016

U.S. Patent

6 'Old

Jaysew Joj Axoud se 1senbal ssaosoud

O
o™
i

%

s|npow Buisseooid g Je)sew sulwislep

<
o
i

A

92IA8p Josn
0] abessaw 109(a. puss N

el

Axo.d e sI ajnpow Buissesoud g JI sUILLIBIBP

€l

Joisew
9AI0e

92IA9p
Jasn wolj 1sanbau ssano.d

4

J81SewW aAIjoe S| ainpow Buisseooid gq JI sulwleep

] f

92IASP J9SN B WOJ) 1sanbal ss820. A998l

z ;

US 9,430,336 B2

Sheet 7 of 11

Aug. 30, 2016

U.S. Patent

90IABP Josn S}uUN g 03 S[eluUBpPaId 0T 'Ol
woJy 1senbau pue qj Jesn Buipuas
ssao0.d uoI198UU02 JBYjoue ppe
9qT ST N
S0IAOD JOSN SHUN g 03 S[elUdPaID
pue | Jesn Buipuss
woJ) 1senbau
uonoauUUoo Bunsixe
ssao0.d
ue azi|iin Y suIwIa1ep
434 0ST
uoNo8UU0D BunsIxe 8z1j1IN 0] J8YIdYM BuUILLISIBp
3T
90IABP JOsN SluUN g 03 S[enuUapalo S151X0
woJj) 1senbal pue | Josn Buipuas o;um.cco
ssao0.d uoIIOBUUOD MBU USI|gelISo :
ETai T
19s 9beI0IS O] SISIX9 ApRaJe uUondsuuo0d JI dullLISIBp
ﬂ A
19S 9bRI0IS 1IUN §(|SUILLIBIBP
% A
90IASP JOSN WOJL 1sanbal aAI903.
SET 1

US 9,430,336 B2

Sheet 8 of 11

Aug. 30, 2016

U.S. Patent

1T 'Ol

SOIADP JOSN WO SHUN §(O} S|BuUSpaID pue P
1senba. sseaoud @l Jesn Buipuas uoiPBUUOD JBY10 YsI|ge1sa
— —_— Jayio
81 081
S0IABP JBSN WOJ) SlUN g 0} S|enuapald pue | Jasn Buipuas
1senbal sseoo.ud uooBuUUoD Jaydio yum S ysijgeise Jaydid
3T 57T sil
BOIABP JBSN WO} SHUN §Q 0} S|enuspaJd pue | J8sn bBuipuas
1senbal ssaooud uonoauuod Jaydio |Inu g1 yslgeise

— S1L

VIT

L1

92IABD JOSN WOl
1s8nbau ssso0.ud

S)IUN g 0] S|B1jUBPaId pue
Q| Josn Buipuas uonJBUUD dJ1 Ys!gelse

L1

89T
dol

yoreoudde AjIN29s UOIID9UUOD JIUN S(] SUILLISIBP

o f

J8s abelo)s JIun g suIWIs)ap

£) 0

sjuswaJinbas AJuN2as auIwIsap
o i

921A8P J8SN WOJ) }s8nbal 8AI828.
= f

US 9,430,336 B2

Sheet 9 of 11

Aug. 30, 2016

U.S. Patent

€1 'O

Q| wawbas ejep pue JaguWNu UOISIASI Mau
yiim 1jnea ajepdn "puBWILIOD 2.0s B YIM Alowaw
NSQ 01 puss pue juswbas ejep Jo $92I|S 918810

o
—
o

pus

T

o

awbas
B)Ep JX8U 1S9)

80¢

(A B

10900 BIED JO YySBY 8ABRS

= f

awies ay) aJe juswbes
g1ep pue Juswbas vlep pPa)Leald8l JI BUILILIBP

4 v0C

Buissaaoud
S @Y1 0} puewwod dnyoeq e yum 109lqo ejep puas
76T N

Jo8lqo ejep
A layjoue 189}

61

uoIsIAGl 1se| JO Juswbos
BIEP 9)B0.00J pue Alowawl NSO WOy $99I1|S 9ASLI8l

109[go B1ep 10) poAES
ysey jse| se alWies Ysey paie|nojeo 4l sulw.aep

4 70t

88T 1

JuswBas elep a8l

108[q0 BIEP JO POAES USBY JSB| 8AsLI)8l

» 00¢

|

T f

sigjauwleled |euoieIado sulwIaep

198(00 B1EP 10 YSey 81enojeo

4 36T

puBWWOD dNyoeg B yjim 1080 B1EP BAI808.

1 36T

78T ?

US 9,430,336 B2

Sheet 10 of 11

Aug. 30, 2016

U.S. Patent

vT 'OId

pus

oQ|

o

o
=

suIwEexs 0] JudWbes
B)Ep Joyloue sulw.is1ep A

9¢¢

paJinba. elepelsw aow JI suIWI)ep

<t
o~
(o]

9

BlEPEBJOUI 9ABS PUB aUIWIS)ap

N
o~
(o]

*

sjuswbas ejep 9J0W JO SUO 818a108.

4 (144

SjusWBas B]ep 9.0W JO SUO JO) S80S BAaII18.

)

0|
o~

T

10000 B)1Ep JO SeweU 921|S suiW.s1ap

1

O
—
o

199[qo B1Bp SUILISBP

<t
i
o

)

US 9,430,336 B2

Sheet 11 of 11

Aug. 30, 2016

U.S. Patent

ST 'O14

Jaisanbal 0} 1938lgo ejep puss

A

O
LN
o

(s)juswbas ejep JO ejepeldW BUIWIBIBP

10800 EJEp 8)E8.08.

A =

o
o~

A

<
LN
o~

sjuswbas ejep 20w Jo sUOo 81es408.

siuswbas ejep Buluiewal 10) SB9I|S aAaLI8.

A ove

o

SjuUSWHaS B)EP 9I0W JO SUO JO) S92I|S 9AS1II8.

_ .l 8EC
aulwexs o} Juswbas 109[qO BIEP JO SBWERU 92I|S BUILIBIBP
BIEp JOYJOUR SuIuLISIep —
1 3¢
10/6go eiep soweU 109[qo ejep aululLep

SIY} JO YyoJeas —
9|qelone} poISNELXe 4 14574
N 11 BUILLIBIOP elepe)aw Alowaw NSQ 01 siasweled buliedwos

— Ag Alowaw NS Ul Blep PaJiSap duIWld19p
91 ¢ A >t
[4°r4

slojowedled yoieos

0} A|geJoney a1edwod sjuswbas ejep ji suiwILep Jaysenbal woy sisjeweled Yyaiess A9l

474 A N (34

US 9,430,336 B2

1
DISPERSED STORAGE NETWORK WITH
METADATA GENERATION AND METHODS
FOR USE THEREWITH

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 12/886,389, entitled “PROXY ACCESS
TO A DISPERSED STORAGE NETWORK?”, filed Sep. 20,
2010, which claims priority pursuant to 35 U.S.C. §119(e) to
U.S. Provisional Application No. 61/264,297, entitled
“PROXY ACCESS TO A DISPERSED STORAGE NET-
WORK?”, filed Nov. 25, 2009, both of which are hereby
incorporated herein by reference in their entirety and made
part of the present U.S. Utility patent application for all
purposes.

U.S. Utility application Ser. No. 12/886,389 claims pri-
ority pursuant to 35 U.S.C. §120 as a continuation-in-part of
U.S. Utility application Ser. No. 12/080,042, entitled
“REBUILDING DATA ON A DISPERSED STORAGE
NETWORK, filed Mar. 31, 2008, which is a continuation-
in-part of U.S. Utility application Ser. No. 11/403,391,
entitled “SYSTEM FOR REBUILDING DISPERSED
DATA”, filed Apr. 13, 2006, which issued as U.S. Pat. No.
7,546,427 on Jun. 9, 2009, which is a continuation-in-part of
U.S. Utility application Ser. No. 11/241,555, entitled “SYS-
TEMS, METHODS AND APPARATUS FOR SUBDIVID-
ING DATA FOR STORAGE IN A DISPERSED DATA
STORAGE GRID”, filed Sep. 30, 2005, which issued as
U.S. Pat. No. 7,953,937 on May 31, 2011, all of which are
hereby incorporated herein by reference in their entirety and
made part of the present U.S. Utility patent application for
all purposes.

U.S. Utility application Ser. No. 12/080,042 also claims
priority pursuant to 35 U.S.C. §120 as a continuation-in-part
of U.S. Utility application Ser. No. 11/973,542, entitled
“ENSURING DATA INTEGRITY ON A DISPERSED
STORAGE GRID”, filed Oct. 9, 2007, which is hereby
incorporated herein by reference in its entirety and made
part of the present U.S. Utility patent application for all
purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such
computing systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting system generates data and/or manipulates data from
one form into another. For instance, an image sensor of the

10

15

20

25

30

35

40

45

50

55

60

65

2

computing system generates raw picture data and, using an
image compression program (e.g., JPEG, MPEG, etc.), the
computing system manipulates the raw picture data into a
standardized compressed image.

With continued advances in processing speed and com-
munication speed, computers are capable of processing real
time multimedia data for applications ranging from simple
voice communications to streaming high definition video.
As such, general-purpose information appliances are replac-
ing purpose-built communications devices (e.g., a tele-
phone). For example, smart phones can support telephony
communications but they are also capable of text messaging
and accessing the internet to perform functions including
email, web browsing, remote applications access, and media
communications (e.g., telephony voice, image transfer,
music files, video files, real time video streaming. etc.).

Each type of computer is constructed and operates in
accordance with one or more communication, processing,
and storage standards. As a result of standardization and
with advances in technology, more and more information
content is being converted into digital formats. For example,
more digital cameras are now being sold than film cameras,
thus producing more digital pictures. As another example,
web-based programming is becoming an alternative to over
the air television broadcasts and/or cable broadcasts. As
further examples, papers, books, video entertainment, home
video, etc. are now being stored digitally, which increases
the demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various
operational aspects of the computer’s processing and com-
munication functions. Generally, the immediacy of access
dictates what type of memory device is used. For example,
random access memory (RAM) memory can be accessed in
any random order with a constant response time, thus it is
typically used for cache memory and main memory. By
contrast, memory device technologies that require physical
movement such as magnetic disks, tapes, and optical discs,
have a variable response time as the physical movement can
take longer than the data transfer, thus they are typically
used for secondary memory (e.g., hard drive, backup
memory, etc.).

A computer’s storage system will be compliant with one
or more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system
(FFS), disk file system (DFS), small computer system inter-
face (SCSI), internet small computer system interface
(iSCS8I), file transfer protocol (FTP), and web-based distrib-
uted authoring and versioning (WebDAV). These standards
specify the data storage format (e.g., files, data objects, data
blocks, directories, etc.) and interfacing between the com-
puter’s processing function and its storage system, which is
a primary function of the computer’s memory controller.

Despite the standardization of the computer and its stor-
age system, memory devices fail; especially commercial
grade memory devices that utilize technologies incorporat-
ing physical movement (e.g., a disc drive). For example, it
is fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of
use. One solution is to utilize a higher-grade disc drive,
which adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID
controller adds parity data to the original data before storing
it across the array. The parity data is calculated from the

US 9,430,336 B2

3

original data such that the failure of a disc will not result in
the loss of the original data. For example, RAID 5 uses three
discs to protect data from the failure of a single disc. The
parity data, and associated redundancy overhead data,
reduces the storage capacity of three independent discs by
one third (e.g., n—1=capacity). RAID 6 can recover from a
loss of two discs and requires a minimum of four discs with
a storage capacity of n-2.

While RAID addresses the memory device failure issue,
it is not without its own failure issues that affect its effec-
tiveness, efficiency and security. For instance, as more discs
are added to the array, the probability of a disc failure
increases, which increases the demand for maintenance. For
example, when a disc fails, it needs to be manually replaced
before another disc fails and the data stored in the RAID
device is lost. To reduce the risk of data loss, data on a RAID
device is typically copied on to one or more other RAID
devices. While this addresses the loss of data issue, it raises
a security issue since multiple copies of data are available,
which increases the chances of unauthorized access. Further,
as the amount of data being stored grows, the overhead of
RAID devices becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

FIG. 6 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the inven-
tion;

FIG. 7 is a flowchart illustrating an example of accessing
a dispersed storage network (DSN) memory in accordance
with the invention;

FIG. 8 is a flowchart illustrating an example of determin-
ing an active master dispersed storage (DS) processing unit
in accordance with the invention;

FIG. 9 is a flowchart illustrating an example of processing
a dispersed storage network (DSN) memory access request
in accordance with the invention;

FIG. 10 is a flowchart illustrating an example of estab-
lishing a connection with a dispersed storage (DS) unit in
accordance with the invention;

FIG. 11 is a flowchart illustrating an example of estab-
lishing a secure connection in accordance with the inven-
tion;

FIG. 12 is a flowchart illustrating an example of detecting
a file change in accordance with the invention;

FIG. 13 is a flowchart illustrating an example of backing
up a data object in accordance with the invention;

FIG. 14 is a flowchart illustrating an example of catalog-
ing of dispersed storage network (DSN) memory content in
accordance with the invention; and

FIG. 15 is a flowchart illustrating an example of searching
dispersed storage network (DSN) memory content in accor-
dance with the invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of a computing
system 10 that includes one or more of a first type of user
devices 12, one or more of a second type of user devices 14,
at least one distributed storage (DS) processing unit 16, at
least one DS managing unit 18, at least one storage integrity
processing unit 20, and a distributed storage network (DSN)
memory 22 coupled via a network 24. The network 24 may
include one or more wireless and/or wire lined communi-
cation systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area
networks (LAN) and/or wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee,
etc.). The processing module may be a single processing
device or a plurality of processing devices. Such a process-
ing device may be a microprocessor, micro-controller, digi-
tal signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module may have
an associated memory and/or memory element, which may
be a single memory device, a plurality of memory devices,
and/or embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that
if the processing module includes more than one processing
device, the processing devices may be centrally located
(e.g., directly coupled together via a wired and/or wireless
bus structure) or may be distributedly located (e.g., cloud
computing via indirect coupling via a local area network
and/or a wide area network). Further note that when the
processing module implements one or more of its functions
via a state machine, analog circuitry, digital circuitry, and/or
logic circuitry, the memory and/or memory element storing
the corresponding operational instructions may be embed-
ded within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic
circuitry. Still further note that, the memory element stores,
and the processing module executes, hard coded and/or
operational instructions corresponding to at least some of the
steps and/or functions illustrated in FIGS. 1-15.

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity process-
ing unit 20 may be a portable computing device (e.g., a
social networking device, a gaming device, a cell phone, a
smart phone, a personal digital assistant, a digital music
player, a digital video player, a laptop computer, a handheld
computer, a video game controller, and/or any other portable
device that includes a computing core) and/or a fixed
computing device (e.g., a personal computer, a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment). Such a portable or fixed computing
device includes a computing core 26 and one or more
interfaces 30, 32, and/or 33. An embodiment of the com-
puting core 26 will be described with reference to FIG. 2.

US 9,430,336 B2

5

With respect to the interfaces, each of the interfaces 30,
32, and 33 includes software and/or hardware to support one
or more communication links via the network 24 and/or
directly. For example, interface 30 supports a communica-
tion link (wired, wireless, direct, via a LAN, via the network
24, etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32
supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage
integrity processing unit 20. As yet another example, inter-
face 33 supports a communication link between the DS
managing unit 18 and any one of the other devices, memory
and/or units 12, 14, 16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the computing
system 10 supports three primary functions: distributed
network data storage management, distributed data storage
and retrieval, and data storage integrity verification. In
accordance with these three primary functions, data can be
distributedly stored in a plurality of physically different
locations and subsequently retrieved in a reliable and secure
manner regardless of failures of individual storage devices,
failures of network equipment, the duration of storage, the
amount of data being stored, attempts at hacking the data,
etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include estab-
lishing distributed data storage parameters, performing net-
work operations, performing network administration, and/or
performing network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g.,
allocation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established
for a user group of devices, established for public access by
the user devices, etc.). For example, the DS managing unit
18 coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing
unit 18 also determines the distributed data storage param-
eters for the vault. In particular, the DS managing unit 18
determines a number of slices (e.g., the number that a data
segment of a data file and/or data block is partitioned into for
distributed storage) and a read threshold value (e.g., the
minimum number of slices required to reconstruct the data
segment).

As another example, the DS managing unit 18 creates and
stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS man-
aging unit 18 tracks the number of times a user accesses a
private vault and/or public vaults, which can be used to
generate a per-access bill. In another instance, the DS
managing unit 18 tracks the amount of data stored and/or
retrieved by a user device and/or a user group, which can be
used to generate a per-data-amount bill.

5

10

15

20

25

30

35

40

45

50

55

60

6

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the computing system
10 for potential failures, determines the devices’ and/or
units” activation status, determines the devices’ and/or units’
loading, and any other system level operation that affects the
performance level of the computing system 10. For example,
the DS managing unit 18 receives and aggregates network
management alarms, alerts, errors, status information, per-
formance information, and messages from the devices 12-14
and/or the units/memory 16, 20, 22. For example, the DS
managing unit 18 receives a simple network management
protocol (SNMP) message regarding the status of the DS
processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the computing sys-
tem 10 that needs replacing, upgrading, repairing, and/or
expanding. For example, the DS managing unit 18 deter-
mines that the DSN memory 22 needs more DS units 36 or
that one or more of the DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing
unit 16 via its interface 30. As will be described in greater
detail with reference to FIG. 2, the interface 30 functions to
mimic a conventional operating system (OS) file system
interface (e.g., network file system (NFS), flash file system
(FFS), disk file system (DFS), file transfer protocol (FTP),
web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iISCSI), etc.). In addition, the interface 30 may
attach a user identification code (ID) to the data file 38
and/or data block 40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) processing 34 thereon (e.g., an error coding
dispersal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data seg-
ments. For example, the DS processing 34 may partition the
data file 38 and/or data block 40 into a fixed byte size
segment (e.g., 2 to 2” bytes, where n=>2) or a variable byte
size (e.g., change byte size from segment to segment, or
from groups of segments to groups of segments, etc.).

For each of the Y data segments, the DS processing 34
error encodes (e.g., forward error correction (FEC), infor-
mation dispersal algorithm, or error correction coding) and
slices (or slices then error encodes) the data segment into a
plurality of error coded (EC) data slices 42-48, which is
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data
storage parameters and the error coding scheme. For
example, if a Reed-Solomon (or other FEC scheme) is used
in an n/k system, then a data segment is divided into n slices,
where k number of slices is needed to reconstruct the
original data (i.e., k is the threshold). As a few specific
examples, the n/k factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16
creates a unique slice name and appends it to the corre-
sponding EC slice 42-48. The slice name includes universal
DSN memory addressing routing information (e.g., virtual

US 9,430,336 B2

7

memory addresses in the DSN memory 22) and user-specific
information (e.g., user ID, file name, data block identifier,
etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via
the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize
the EC slices 42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48
is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the
DS managing unit 18 may indicate that each slice is to be
stored in a different DS unit 36. As another example, the DS
managing unit 18 may indicate that like slice numbers of
different data segments are to be stored in the same DS unit
36. For example, the first slice of each of the data segments
is to be stored in a first DS unit 36, the second slice of each
of the data segments is to be stored in a second DS unit 36,
etc. In this manner, the data is encoded and distributedly
stored at physically diverse locations to improve data stor-
age integrity and security. Further examples of encoding the
data segments will be provided with reference to one or
more of FIGS. 2-15.

Each DS unit 36 that receives an EC slice 42-48 for
storage translates the virtual DSN memory address of the
slice into a local physical address for storage. Accordingly,
each DS unit 36 maintains a virtual to physical memory
mapping to assist in the storage and retrieval of data.

The first type of user device 12 performs a similar
function to store data in the DSN memory 22 with the
exception that it includes the DS processing. As such, the
user device 12 encodes and slices the data file and/or data
block it has to store. The device then transmits the slices 11
to the DSN memory via its DSN interface 32 and the
network 24.

For a second type of user device 14 to retrieve a data file
or data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS
units 36 storing the slices of the data file and/or data block
based on the read command. The DS processing unit 16 may
also communicate with the DS managing unit 18 to verify
that the user device 14 is authorized to access the requested
data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10 error coding scheme). Each of the DS units 36
receiving the slice read command, verifies the command,
accesses its virtual to physical memory mapping, retrieves
the requested slice, or slices, and transmits it to the DS
processing unit 16.

Once the DS processing unit 16 has received a read
threshold number of slices for a data segment, it performs an
error decoding function and de-slicing to reconstruct the
data segment. When Y number of data segments has been
reconstructed, the DS processing unit 16 provides the data
file 38 and/or data block 40 to the user device 14. Note that
the first type of user device 12 performs a similar process to
retrieve a data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data

25

40

45

55

8

block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the
corrupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a
read only memory (ROM) basic input output system (BIOS)
64, and one or more memory interface modules. The
memory interface module(s) includes one or more of a
universal serial bus (USB) interface module 66, a host bus
adapter (HBA) interface module 68, a network interface
module 70, a flash interface module 72, a hard drive inter-
face module 74, and a DSN interface module 76. Note the
DSN interface module 76 and/or the network interface
module 70 may function as the interface 30 of the user
device 14 of FIG. 1. Further note that the IO device interface
module 62 and/or the memory interface modules may be
collectively or individually referred to as 1O ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a process-
ing device may be a microprocessor, micro-controller, digi-
tal signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may
have an associated memory and/or memory element, which
may be a single memory device, a plurality of memory
devices, and/or embedded circuitry of the processing mod-
ule 50. Such a memory device may be a read-only memory,
random access memory, volatile memory, non-volatile
memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital infor-
mation. Note that if the processing module 50 includes more
than one processing device, the processing devices may be
centrally located (e.g., directly coupled together via a wired
and/or wireless bus structure) or may be distributedly
located (e.g., cloud computing via indirect coupling via a
local area network and/or a wide area network). Further note
that when the processing module 50 implements one or more
of its functions via a state machine, analog circuitry, digital
circuitry, and/or logic circuitry, the memory and/or memory
element storing the corresponding operational instructions
may be embedded within, or external to, the circuitry
comprising the state machine, analog circuitry, digital cir-
cuitry, and/or logic circuitry. Still further note that, the
memory element stores, and the processing module 50
executes, hard coded and/or operational instructions corre-
sponding to at least some of the steps and/or functions
illustrated in FIGS. 1-15.

FIG. 3 is a schematic block diagram of an embodiment of
a dispersed storage (DS) processing module 34 of user
device 12 and/or of the DS processing unit 16. The DS
processing module 34 includes a gateway module 78, an
access module 80, a grid module 82, and a storage module
84. The DS processing module 34 may also include an

US 9,430,336 B2

9

interface 30 and the DSnet interface 32 or the interfaces 68
and/or 70 may be part of user device 12 or of the DS
processing unit 16. The DS processing module 34 may
further include a bypass/feedback path between the storage
module 84 to the gateway module 78. Note that the modules
78-84 of the DS processing module 34 may be in a single
unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a trans-
action message, a user device identity (ID), a data object
identifier, a source name, and/or user information. The
gateway module 78 authenticates the user associated with
the data object by verifying the user ID 86 with the DS
managing unit 18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the DS management unit 18,
the user device, and/or the other authenticating unit. The
user information includes a vault identifier, operational
parameters, and user attributes (e.g., user data, billing infor-
mation, etc.). A vault identifier identifies a vault, which is a
virtual memory space that maps to a set of DS storage units
36. For example, vault 1 (i.e., user 1’s DSN memory space)
includes eight DS storage units (X=8 wide) and vault 2 (i.e.,
user 2°s DSN memory space) includes sixteen DS storage
units (X=16 wide). The operational parameters may include
an error coding algorithm, the width n (number of pillars X
or slices per segment for this vault), a read threshold T, a
write threshold, an encryption algorithm, a slicing param-
eter, a compression algorithm, an integrity check method,
caching settings, parallelism settings, and/or other param-
eters that may be used to access the DSN memory layer.

The gateway module 78 uses the user information to
assign a source name 35 to the data. For instance, the
gateway module 78 determines the source name 35 of the
data object 40 based on the vault identifier and the data
object. For example, the source name may contain a file
identifier (ID), a vault generation number, a reserved field,
and a vault identifier (ID). As another example, the gateway
module 78 may generate the file ID based on a hash function
of the data object 40. Note that the gateway module 78 may
also perform message conversion, protocol conversion, elec-
trical conversion, optical conversion, access control, user
identification, user information retrieval, traffic monitoring,
statistics generation, configuration, management, and/or
source name determination.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The number of segments Y may be chosen
or randomly assigned based on a selected segment size and
the size of the data object. For example, if the number of
segments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object.
For instance, if the data object is an image file of 4,194,304
eight bit bytes (e.g., 33,554,432 bits) and the number of
segments Y=131,072, then each segment is 256 bits or 32
bytes. As another example, if segment size is fixed, then the
number of segments Y varies based on the size of data
object. For instance, if the data object is an image file of
4,194,304 bytes and the fixed size of each segment is 4,096
bytes, then the number of segments Y=1,024. Note that each
segment is associated with the same source name.

25

35

40

45

10

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding
dispersal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable,
the grid module 82 error encodes (e.g., Reed-Solomon,
Convolution encoding, Trellis encoding, etc.) the data seg-
ment or manipulated data segment into X error coded data
slices 42-48.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal
function include a read threshold T, a write threshold W, etc.
The read threshold (e.g., T=10, when X=16) corresponds to
the minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module
indicates proper storage of the encoded data segment. Note
that the write threshold is greater than or equal to the read
threshold for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing
information field includes a slice index, a vault 1D, a vault
generation, and a reserved field. The slice index is based on
the pillar number and the vault ID and, as such, is unique for
each pillar (e.g., slices of the same pillar for the same vault
for any segment will share the same slice index). The vault
specific field includes a data name, which includes a file ID
and a segment number (e.g., a sequential numbering of data
segments 1-Y of a simple data object or a data block
number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipu-
lation on the slices. If enabled, the manipulation includes
slice level compression, encryption, CRC, addressing, tag-
ging, and/or other manipulation to improve the effectiveness
of the computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which
of'the DS storage units 36 will store the EC data slices based
on a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS
storage unit attributes may include availability, self-selec-
tion, performance history, link speed, link latency, owner-
ship, available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another
source, a lookup table, data ownership, and/or any other
factor to optimize the operation of the computing system.
Note that the number of DS storage units 36 is equal to or
greater than the number of pillars (e.g., X) so that no more
than one error coded data slice of the same data segment is
stored on the same DS storage unit 36. Further note that EC
data slices of the same pillar number but of different
segments (e.g., EC data slice 1 of data segment 1 and EC
data slice 1 of data segment 2) may be stored on the same
or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identi-

US 9,430,336 B2

11

fies a plurality of DS storage units based on information
provided by the grid module 82. The storage module 84 then
outputs the encoded data slices 1 through X of each segment
1 through Y to the DS storage units 36. Each of the DS
storage units 36 stores its EC data slice(s) and maintains a
local virtual DSN address to physical location table to
convert the virtual DSN address of the EC data slice(s) into
physical storage addresses.

In an example of a read operation, the user device 12
and/or 14 sends a read request to the DS processing unit 16,
which authenticates the request. When the request is authen-
tic, the DS processing unit 16 sends a read message to each
of the DS storage units 36 storing slices of the data object
being read. The slices are received via the DSnet interface 32
and processed by the storage module 84, which performs a
parity check and provides the slices to the grid module 82
when the parity check was successful. The grid module 82
decodes the slices in accordance with the error coding
dispersal storage function to reconstruct the data segment.
The access module 80 reconstructs the data object from the
data segments and the gateway module 78 formats the data
object for transmission to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely
external to the grid module 82. For example, the control unit
73 may be part of the computing core at a remote location,
part of a user device, part of the DS managing unit 18, or
distributed amongst one or more DS storage units.

In an example of a write operation, the pre-slice manipu-
lator 75 receives a data segment 90-92 and a write instruc-
tion from an authorized user device. The pre-slice manipu-
lator 75 determines if pre-manipulation of the data segment
90-92 is required and, if so, what type. The pre-slice
manipulator 75 may make the determination independently
or based on instructions from the control unit 73, where the
determination is based on a computing system-wide prede-
termination, a table lookup, vault parameters associated with
the user identification, the type of data, security require-
ments, available DSN memory, performance requirements,
and/or other metadata.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in
accordance with the type of manipulation. For example, the
type of manipulation may be compression (e.g., Lempel-
Ziv-Welch, Huffman, Golomb, fractal, wavelet, etc.), signa-
tures (e.g., Digital Signature Algorithm (DSA), Elliptic
Curve DSA, Secure Hash Algorithm, etc.), watermarking,
tagging, encryption (e.g., Data Encryption Standard,
Advanced Encryption Standard, etc.), adding metadata (e.g.,
time/date stamping, user information, file type, etc.), cyclic
redundancy check (e.g., CRC32), and/or other data manipu-
lations to produce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data seg-
ment 90-92 using a forward error correction (FEC) encoder
(and/or other type of erasure coding and/or error coding) to
produce an encoded data segment 94. The encoder 77
determines which forward error correction algorithm to use
based on a predetermination associated with the user’s vault,
a time based algorithm, user direction, DS managing unit
direction, control unit direction, as a function of the data
type, as a function of the data segment 90-92 metadata,
and/or any other factor to determine algorithm type. The
forward error correction algorithm may be Golay, Multidi-

10

15

20

25

30

35

40

45

50

55

60

65

12

mensional parity, Reed-Solomon, Hamming, Bose Ray
Chauduri Hocquenghem (BCH), Cauchy-Reed-Solomon, or
any other FEC encoder. Note that the encoder 77 may use a
different encoding algorithm for each data segment 90-92,
the same encoding algorithm for the data segments 90-92 of
a data object, or a combination thereof.

The encoded data segment 94 is of greater size than the
data segment 90-92 by the overhead rate of the encoding
algorithm by a factor of X/T, where X is the width or number
of slices, and T is the read threshold. In this regard, the
corresponding decoding process can accommodate at most
X-T missing EC data slices and still recreate the data
segment 90-92. For example, if X=16 and T=10, then the
data segment 90-92 will be recoverable as long as 10 or
more EC data slices per segment are not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 90-92. For
example, if the slicing parameter is X=16, then the slicer 79
slices each encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or
other metadata. Note that the type of post-slice manipulation
may include slice level compression, signatures, encryption,
CRC, addressing, watermarking, tagging, adding metadata,
and/or other manipulation to improve the effectiveness of
the computing system.

In an example of a read operation, the post-slice de-
manipulator 89 receives at least a read threshold number of
EC data slices and performs the inverse function of the
post-slice manipulator 81 to produce a plurality of encoded
slices. The de-slicer 87 de-slices the encoded slices to
produce an encoded data segment 94. The decoder 85
performs the inverse function of the encoder 77 to recapture
the data segment 90-92. The pre-slice de-manipulator 83
performs the inverse function of the pre-slice manipulator 75
to recapture the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the
encoded data segment 94 includes thirty-two bits, but may
include more or less bits. The slicer 79 disperses the bits of
the encoded data segment 94 across the EC data slices in a
pattern as shown. As such, each EC data slice does not
include consecutive bits of the data segment 94 reducing the
impact of consecutive bit failures on data recovery. For
example, if EC data slice 2 (which includes bits 1, 5, 9, 13,
17, 25, and 29) is unavailable (e.g., lost, inaccessible, or
corrupted), the data segment can be reconstructed from the
other EC data slices (e.g., 1, 3 and 4 for a read threshold of
3 and a width of 4).

FIG. 6 is a schematic block diagram of another embodi-
ment of a computing system that includes at least one user
device 102, a plurality (two or more) of dispersed storage
(DS) processing units 1-2, and a dispersed storage network
(DSN) memory 22. The DSN memory 22 includes a plu-
rality of dispersed storage (DS) units 36. Each of the DS
processing units includes one or more processing modules,
may be a separate device, may be contained in one or more
common devices, and/or may be contained within a user
device. Note that the system may further include a plurality
of user devices 102 and/or a plurality of DSN memories 22.

US 9,430,336 B2

13

Each DS processing unit 1-2 has a unique Internet pro-
tocol (IP) address to facilitate individual addressing by the
user device(s), the DS units 36, and/or other system ele-
ments (not shown). For example, DS processing unit 1 has
1P address 192.168.1.34 and DS processing unit 2 has IP
address 192.168.1.35. In addition, the DS processing units
1-2 maintain a responsibility indicator with respect to
responding to DSN memory access requests from the user
device 102. The responsibility indicator may indicate vari-
ous responsibility levels including no responsibility, a proxy
DS processing module, and/or a master DS processing
module. For example, DS processing unit 1 has the respon-
sibility of the master DS processing module and DS pro-
cessing unit 2 has the responsibility of the proxy DS
processing module during a first time period. In this
example, DS processing unit 1 directly processes DSN
memory 22 access requests from the user device 102 during
the first time period and DS processing unit 2 indirectly
processes DSN memory 22 access requests from the user
device 102 during the first time period by forwarding them
to DS processing unit 1.

The master DS processing module responsibility includes
at least four activities. The first includes a determination of
the master DS processing unit. The second includes estab-
lishing a connection between the DSN memory 22 and the
master DS processing unit. The third includes establishing a
connection between the user device 102 and the master DS
processing unit. The fourth includes facilitating the utiliza-
tion of the DSN memory 22 by the user device 102.

In the first activity, the DS processing units 1-2 negotiate
to determine which one of them will serve as the active
master for the user device 102. The determination may be
based on one or more of a random decision, a schedule, a
predetermination, a command, a time duration since the last
determination, DS processing unit performance, DS pro-
cessing unit errors, DS processing unit capabilities, and a
computing system loading level indicator. In an example, the
DS processing unit 1 with the master DS processing unit
responsibility processes all of the DSN memory 22 access
requests from the user device 102. In an example, DS
processing unit 2 with the proxy responsibility assists the
master DS processing unit 1 by transferring messages
between the master DS processing unit 1 and the user device
102. An embodiment of method for determining the master
DS processing unit will be discussed in greater detail with
reference to FIG. 8.

In the second activity, the master DS processing unit 1-2
establishes a connection with the DS units 36 of the DSN
memory 22. In an example, the DS unit 36 queries one or
more of the DS processing units 1-2 to determine which one
is the active master. Once the master is identified, the DS
units 36 establish an authenticated connection with the
master DS processing unit by exchanging signed certificates
with a public key infrastructure (PKI) scheme.

In the third activity, the master DS processing unit estab-
lishes a connection with the user device 102. In an example,
the user device 102 queries one or more of the DS process-
ing units to determine its responsibilities. Having identified
the master, the user device establishes an authenticated
connection with the master DS processing unit 1 by
exchanging signed certificates with a public key infrastruc-
ture (PKI) scheme. In addition, or in the alternative, the user
device 102 establishes an authenticated connection with DS
processing unit 2 that is not the master by exchanging signed
certificates with a public key infrastructure (PKI) scheme. In
this manner, the user device 102 may choose to use the
proxy (e.g., non-master) DS processing unit when the master

20

35

40

45

14

DS processing unit is not readily available (e.g., when the
network 24 is down to the master and/or when the master is
too busy).

In the fourth activity, the master DS processing unit
facilitates the user device 102 accessing the DSN memory
22. For example, the master DS processing unit receives a
DSN memory access request (e.g., store, retrieve, delete,
list) from the user device over the established connection
and processes it accordingly. Alternatively, the proxy DS
processing unit receives the DSN memory access request
from the user device and forwards the DSN memory access
request to the master DS processing unit 1 for processing. In
an instance, the user device 102 sends the DSN memory
access request to DS processing unit 2 that is not the master.
As another alternative, the proxy DS processing unit
receives the DSN memory access request from the user
device, processes it, and may further inform the master DS
processing unit of the DSN memory access request and
processing of it.

FIG. 7 is a flowchart illustrating an example of accessing
a dispersed storage network (DSN) memory. The method
begins at step 104 where a processing module of a user
device (or other device of the system) determines to access
the DSN memory. Such a determination may be based on a
requirement to perform one or more of storing data, retriev-
ing data, deleting data, and listing data. At step 106, the
processing module selects one of the dispersed storage (DS)
processing modules to be a master for facilitating access to
the DSN memory. Such a selection may be based on one or
more of a query, a slice name associated with the encoded
data slice, a vault identifier, a DSN memory identifier, a list
of DS processing module identifiers, a DS processing mod-
ule assignment list, a DS processing module performance
indicator, a DS processing module capability indicator, and
a last utilized DS processing module identifier. In an
example, the processing module determines a random DS
processing module of a plurality of candidate master DS
processing modules. In another example, the processing
module determines a DS processing module of a plurality of
master DS processing units where the DS processing module
was not recently utilized (e.g., round robin selection).

The method continues at step 108 where the processing
module sends a DSN memory access request to the selected
DS processing module (e.g., master or proxy). Note that the
access request includes one of more of a request to store an
encoded data slice, a request to delete the encoded data slice,
a request to list the encoded data slice, and a request to
retrieve the encoded data slice. The selected DS processing
module determines if it will process the request, creates a
request response, and sends the request response to the
processing module of the user device. The request response
indicates that the selected DS processing module will pro-
cess the request or not. The method of determination of the
response is discussed in greater detail with reference to FIG.
9.

At step 112, the processing module receives the request
response from the selected DS processing module and
determines if the response is favorable. Note that the
response includes one of an active master access indicator,
a master DS processing module identifier, a proxy access
indicator, and a rejection message. The processing module
determines that the response is favorable when the response
indicates that the selected DS processing module will pro-
cess the request (e.g., directly as the master or as a proxy to
a master) and determines that the response is not favorable

US 9,430,336 B2

15

when no response is received within a given time frame or
when the response to the access request does not include an
access indication.

When the response is not favorable, the method continues
at step 114, where the processing module saves a DS
processing module identifier of the selected DS processing
module with the unfavorable response and the method
branches back to step 106 where the processing module
selects another DS processing module. Alternatively, or in
addition to, the processing module receives the identity of
the other DS processing module in the response. When the
response is favorable, the method continues at step 116
where the processing module and selected DS processing
module complete a transaction of the DSN memory access
request (e.g., the processing module sends a data object to
the DS processing module for storage in the DSN memory
when the access request includes a storage request).

FIG. 8 is a flowchart illustrating an example of determin-
ing a master dispersed storage (DS) processing module. The
method begins at step 118 where a processing module
attempts to discover companion DS processing modules,
which may be a group of DS processing modules where at
least one DS processing modules is a master DS processing
module. For example, one DS processing module is a master
at a time and master responsibilities may change from time
to time. As another example, two or more DS processing
modules are co-masters and their respective master respon-
sibilities may change from time to time.

The discovery of the companion DS processing modules
may be based on one or more of a list, a command, a latency
ping test, a configuration file, and a query. For example, the
processing module discovers a companion DS processing
module via a latency ping test (e.g., where the configuration
file specifies selection based on low latencies of the same
site).

The method continues at step 120 where the processing
module negotiates the master responsibility with the other
companion DS processing module(s) based on one or more
of a random choice, a schedule, a predetermination, a
command, a time duration since the last determination, DS
processing module performance, DS processing module
errors, DS processing module capabilities, and a computing
system loading level indicator. For example, one processing
module may negotiate that one or more of the master
responsibilities to another DS processing module when it
has not recently served as the master processing module.

At step 122, the processing module confirms the master
DS processing module responsibility with the other com-
panion DS processing module(s) by sending a confirmation
message to the other companion DS processing module(s).
Each of the DS processing modules then saves their current
master responsibilities (if any) and those of the other DS
processing modules.

FIG. 9 is a flowchart illustrating an example of processing
a dispersed storage network (DSN) memory access request.
The method begins at step 124 where a processing module
of a DS processing unit receives, from a user device, an
access request (e.g., store, retrieve, delete, list) to a dispersed
storage network (DSN) memory. At step 126, the processing
module determines responsibility for the access request
(e.g., does it have master responsibilities). Such a determi-
nation includes at least one of obtaining a master DS
processing module indicator, obtaining a proxy access indi-
cator, sending a query message, interpreting a slice name
associated with the encoded data slice, interpreting a user
device identifier, interpreting a vault identifier, interpreting
a DSN memory identifier, interpreting a list of dispersed

10

15

20

25

30

35

40

45

50

55

60

65

16

storage (DS) processing module identifiers, interpreting a
DS processing module assignment list, interpreting a DS
processing module performance indicator, interpreting a DS
processing module capability indicator.

When the processing module is the master DS processing
module, the method continues at step 128 where processing
module processes the request from the user device. Note that
processing the request may include sending an access
request response to the user device to confirm processing,
accessing the DSN memory over the connections with the
DS units to store, retrieve, and/or delete data, and to send
and receive data to and from the user device.

When the processing module is not the master DS pro-
cessing module, the method continues at step 130 where the
processing module determines if it has proxy responsibili-
ties. If not, the method continues to step 132 where the
processing module ignores the access request or sends a
rejection message (e.g., indicating that the processing mod-
ule is not a master and not a proxy). Alternatively, or in
addition to, the processing module may send a message to
the user device that identifies the master DS processing
module when the responsibility is a redirection function.

When the processing module has proxy responsibilities,
the method continues at step 134 where the processing
module identifies a master DS processing module. The
master DS processing module may be identified by obtain-
ing a master DS processing module indicator, sending a
query message, interpreting a slice name associated with the
encoded data slice, interpreting a vault identifier, interpret-
ing a DSN memory identifier, interpreting a list of DS
processing module identifiers, accessing a DS processing
module assignment list, interpreting a DS processing mod-
ule performance indicator, interpreting a DS processing
module capability indicator, and/or interpreting a last uti-
lized DS processing module identifier. For example, the
processing module identifies the master DS processing mod-
ule based on accessing the DS processing module assign-
ment list.

At step 136, the processing module performs a proxy
function related to the access request on behalf of the user
device with the master DS processing module. The proxy
function includes one or more of forwarding the access
request to the master DS processing module, receiving a
response from the master DS processing module, and for-
warding the response to the user device.

FIG. 10 is a flowchart illustrating an example of estab-
lishing a connection with a dispersed storage (DS) unit. The
method begins at step 138 where a processing module
receives a request (e.g., store, retrieve, delete, list) to access
a DSN memory from a user device. The request may include
one or more of the user ID, a request type, authentication
credentials (e.g., a public key interface (PKI) signed certifi-
cate), a security indicator, a performance indicator, and a
priority indicator.

At step 140, the processing module determines a DS unit
storage set that includes the DS units that make up pillars of
where slices are stored for the same data segment. Such a
determination may be based on one or more of a lookup of
the virtual DSN address to physical location table, a prede-
termination, a command, a list, the user ID, the request type,
the authentication credentials (e.g., a PKI signed certificate),
the security indicator, the performance indicator, and the
priority indicator.

At step 142, the processing module determines whether a
connection already exists with each DS unit of the DS unit
storage set based on one or more of a lookup of previous
connections, a predetermination, a command, a list, the user

US 9,430,336 B2

17

1D, the request type, and a query. Note that a connection
indicates the DS processing unit and the DS unit have
previously successfully exchanged authentication creden-
tials. In an example, the exchange may include establishing
cipher algorithms and keys.

When the connection does not exist, the method continues
at step 144 where the processing module establishes a new
connection with each DS unit that does have a connection by
sending the user ID and the authentication credentials to the
DS unit(s). The processing module adds the connection in a
list, which is referenced during subsequent DSN memory
access requests. At step 146, the processing module pro-
cesses the request from the user device. Note that processing
the request may include sending an access request response
to the user device to confirm processing, accessing the DSN
memory over the connections with the DS units to store,
retrieve, and/or delete data, and to send and receive data to
and from the user device.

When the connection exists, the method continues at step
148 where the processing module determines whether to
utilize the existing connection. Such a determination may be
based on one or more of a lookup of previous connections,
a measured connection utilization indicator, a connection
capacity estimate, a connection load estimate for the user
device, a predetermination, a command, a list, the user 1D,
the request type, the security indicator, the performance
indicator, the priority indicator, and a query. For example,
the DS processing may determine to utilize an existing
connection when the difference between the connection
capacity estimate and the sum of the connection load esti-
mate for the user device and the measured connection
utilization indicator is greater than a threshold. For instance,
there is more than a threshold of estimated capacity left over
after adding the estimated user device transaction traffic to
the existing connection load. Note that there may be more
than one connection between the DS processing unit and the
DS unit. Further note that each connection may be utilized
for one or more user device in user-device-to-DSN-memory
access transactions. For example, the processing module
may determine to trunk user transactions over a pool of
connections.

When an existing connection is going to be used, the
method continues at step 150 where the DS processing
module determines which existing connection to utilize and
utilizes the existing connection by sending the user ID and
the authentication credentials to the DS unit(s) to authenti-
cate the user (e.g., but not to establish a new connection).
Such a determination may be based on one or more of a
lookup of previous connections, a connection capacity esti-
mate, a connection load estimate for the user device, a
predetermination, a command, a list, the user ID, the request
type, the security indicator, the performance indicator, the
priority indicator, and/or a query. In addition, the processing
module adds or updates the connection in the connection list.
At step 152, the processing module processes the request
from the user device, which may include sending an access
request response to the user device to confirm processing,
accessing the DSN memory over the connections with the
DS units to store, retrieve, and/or delete data, and to send
and receive data to and from the user device.

When an existing connection is not going to be used, the
method continues at step 154 where the processing module
adds another connection, notifies the user device, and
updates credentials. For example, the processing module
determines to add a connection when the difference between
the connection capacity estimate and the sum of the con-
nection load estimate for the user device and the measured

10

15

20

25

30

35

40

45

50

55

60

65

18

connection utilization indicator is less than a threshold. For
instance, there is less than a threshold (e.g., not enough) of
estimated capacity left over after adding the estimated user
device transaction traffic to the existing connection load. In
another example, the processing module determines to add
a connection when a security indicator warrants a new
connection (e.g., a higher than average level of security is
required). In addition, the processing module adds the
connection to the connection list. At step 156, the processing
module processes the request from the user device as
previously discussed.

FIG. 11 is a flowchart illustrating an example of estab-
lishing a secure connection. The method begins at step 158
where a processing module (e.g., of a DS processing unit)
receives a request (e.g., store, retrieve, delete, list) to access
the DSN memory from a user device. The request may
include one or more of a user ID, a request type, data type,
user device authentication credentials (e.g., a PKI signed
certificate), a security indicator, a performance indicator,
and/or a priority indicator.

At step 160, the processing module determines security
requirements for the connection, where the security require-
ments may specify a level of protection from tampering
and/or eaves dropping. Such a determination may be based
on one or more of a user vault lookup, the user 1D, the
request type, the data type, the user device authentication
credentials (e.g., a PKI signed certificate), the security
indicator, the performance indicator, and/or the priority
indicator. For example, the processing module determines
security requirements with no tampering or eaves dropping
protection when the data type indicates a public text docu-
ment and the security indictor indicates no security is
required. In another example, the processing module deter-
mines security requirements with tampering protection and
little eaves dropping protection when the data type indicates
a private financial document and the security indictor indi-
cates little security is required. In another example, the
processing module determines security requirements with
tampering protection and eaves dropping protection when
the data type indicates a confidential document and the
security indictor indicates higher security is required.

At step 162, the processing module determines a DS unit
storage set, which includes DS units that make up pillars of
where slices are stored for the same data segment. Such a
determination may be based on one or more of a lookup of
the virtual DSN address to physical location table, a user
vault lookup, the security requirements, security capabilities
of the DS unit (e.g., cipher algorithms), security attack
history of the DS unit, a predetermination, a command, a list,
the user ID, the request type, the security indicator, the
performance indicator, and the priority indicator.

At step 164, the processing module determines DS unit
connection security approach that includes a first level with
no tampering protection and no eaves dropping protection,
a second level with tampering protection and no eaves
dropping protection, or a third level with tampering protec-
tion and eaves dropping protection. For example, the first
level with no tampering protection and no eaves dropping
protection may be implemented with transmission control
protocol (TCP). The second level with tampering protection
and no eaves dropping protection may be implemented with
transport layer security (TLS) with a null cipher. The third
level with tampering protection and eaves dropping protec-
tion may be implemented with transport layer security (TLS)
with a cipher.

The processing module determination of the DS unit
connection security approach may be based on one or more

US 9,430,336 B2

19

of the security requirements, a user vault lookup, security
capabilities of the DS unit (e.g., cipher algorithms, location),
security attack history of the DS unit, a predetermination, a
command, a list, the user ID, the request type, the security
indicator, the performance indicator, and/or the priority
indicator. In an example, the processing module determines
a different security approach for two or more DS units of the
same DS unit storage set. For instance, a data segment may
have a portion of its slices stored in one part of the DSN
memory with one security approach and may have another
portion of its slices stored in another part of the DSN
memory with another security approach. As a more specific
example, in a pillar width n=16 system, the processing
module determines that the DS units of pillars 1-4 utilize the
TCP approach (e.g., since they have superior security capa-
bilities being located in the same rack as the DS processing
unit), that the DS units of pillars 5-12 utilize the TLS null
cipher approach (e.g., since they have good security capa-
bilities being located in the same building complex as the DS
processing unit), and that the DS units of pillars 13-16 utilize
the TLS with a cipher approach (e.g., since they have the
lowest security capabilities being located in different cities
from the DS processing unit). In another example, the
processing module determines that the same security
approach shall be used for the DS units of the same DS unit
storage set.

At step 168, the processing module establishes a TCP
connection by sending the user ID and the authentication
credentials to the DS unit when the security approach for the
DS unit connection is to be TCP. In addition, the processing
module adds the connection and its security approach to the
connections list. At step 170, the processing module pro-
cesses the request from the user device, which may include
sending an access request response to the user device to
confirm processing, accessing the DSN memory over the
TCP connection with the DS unit to store, retrieve, and/or
delete data, and to send and receive data to and from the user
device.

At step 172, the processing module establishes a TLS null
cipher connection by sending the user ID, the authentication
credentials, and a key to utilize in the hash based message
authentication code (HMAC) integrity verification to the DS
unit when the DS processing determines the connection
security approach for the DS unit connection to be TLS null
cipher. In addition, the processing module adds the connec-
tion and its security approach to the connection list. At step
174, the processing module processes the request from the
user device, which may include sending an access request
response to the user device to confirm processing, accessing
the DSN memory over the TLS null cipher connection with
the DS unit to store, retrieve, and/or delete data, and to send
and receive data to and from the user device. Note that the
messages are verified for integrity by checking the HMAC
of the payload utilizing the key.

At step 176, the processing module establishes a TLS with
a cipher connection by sending the user ID, the authentica-
tion credentials, a key to utilize in the HMAC integrity
verification, a cipher algorithm choice, and a cipher key to
encrypt message payload to the DS unit when the DS
processing determines the connection security approach for
the DS unit connection to be TLS with a cipher. The
processing module may determine the cipher algorithm
choice based on the strongest cipher that the DS processing
unit and DS unit both support (e.g., from a cipher list or
cipher query). In addition, the processing module adds the
connection and its security approach to the connection list.

10

15

20

25

30

35

40

45

50

55

60

20

At step 178, the processing module processes the request
from the user device, which may include sending an access
request response to the user device to confirm processing,
accessing the DSN memory over the TLS with a cipher
connection with the DS unit to store, retrieve, and/or delete
data, and to send and receive data to and from the user
device. Note that the messages are verified for integrity by
checking the HMAC of the payload utilizing the key. Further
note that the payload is encrypted on one end of the
connection and decrypted on the other end of the connection
by utilizing the cipher algorithm and the cipher key.

At step 180, processing module establishes other connec-
tion types by sending the user ID and the authentication
credentials to the DS unit when the DS processing deter-
mines the connection security approach for the DS unit
connection to be other. At step 182, the processing module
processes the request from the user device as previously
discussed.

FIG. 12 is a flowchart illustrating an example of detecting
a file change. The method begins at step 184 where a
processing module of a user device calculates a hash of a
data object being checked for a change since a previous
backup. At step 186, the processing module retrieves the last
hash saved for the data object based on accessing a list
utilizing a data object name. The list links the hash of the
data object and the data object name when it is sent to a DS
processing unit for backup in the DSN memory.

The method continues at step 188 where the processing
module determines if the calculated hash is the same as the
last hash saved for the data object by comparing the two.
Alternatively, the processing module determines if the file
has changed by comparing the file to a saved last file (e.g.,
locally or in the DSN memory). When they are the same, the
method continues at step 190 where the processing module
tests another data object and the method repeats at step 184.

When the hashes are not the same, the method continues
at step 192 where the processing module sends the data
object, the data object name, and a backup command to a DS
processing unit. In an example, the processing module sends
the entire data object. In another example, the processing
module sends a portion of the data object that has changed
(e.g., determined by a more granular hash test) and a
position of change indicator (e.g., which byte number range
of'a change insert). At step 194, the processing module saves
the hash of the data object. Note that the method may repeat
such that the processing module examines more data objects
to detect changes.

Alternatively, or in addition to, the processing module
may determine to delete an older data object revision (e.g.,
based on age, a schedule, a lack of use, a policy, a command,
etc.) and may send a delete revision command with the
revision number and data object name to the DS processing
unit. The DS processing of the DS processing unit may
delete EC data slices from the DSN memory for data
segments that are unique and not in common with data
segments of other revisions of the same data object.

FIG. 13 is a flowchart illustrating an example of backing
up a data object. The method begins at step 196 where a
processing module (e.g., of a DS processing unit) receives
the data object, a data object name, and a backup command
from a user device. At step 198, the processing module
determines operational parameters based on one or more of
a lookup of the virtual DSN address to physical location
table, a command, a list, a vault lookup, and a predetermi-
nation. At step 200, the processing module creates a data
segment of the data object in accordance with the opera-

US 9,430,336 B2

21

tional parameters. Note that the process begins with the first
data segment and may later loop back for subsequent data
segments.

The method continues at step 202 where the processing
module retrieves encoded data slices of the data segment and
recreates a data segment from the retrieved slices in accor-
dance with the operational parameters. At step 204, the DS
processing determines if the recreated data segment and the
data segment are substantially the same. When the data
segments are not substantially the same, the method contin-
ues at step 206 where the processing module determines if
the data segment number is the last data segment of the data
object based on the data segment sizes and/or the size of the
data object. When it is the last data segment, the method at
step 210 is completed. When it is not the last data segment,
the method continues at step 208 where the processing
module targets the next data segment and the method repeats
at step 200.

When the data segments are substantially the same, the
method continues at step 212 where the processing module
creates slices of the data segment in accordance with the
operational parameters and sends the slices to the DSN
memory with a store command for storage therein. In an
example, the processing module determines to utilize the
same operational parameters for the same data segment
numbers of different revisions. In another example, the
processing module determines to utilize different opera-
tional parameters for the same data segment numbers of
different revisions. For instance, the data segment size may
be different in the new revision. In another example, the
processing module determines to utilize a less reliable
distributed data approach for the new revision data segment
since inherent backups of the older revision data segment are
already stored in the DSN memory.

In addition, the processing module updates the user vault
with a new revision number and any operational parameter
changes for all updated data segments (e.g., by data segment
number) of the same received data object. Alternatively, the
data object retrieval method may utilize the user vault
information including which data segments have new data
and how they were stored. For instance, a recreated data
object may be determined from a collection of recreated data
segments of the latest revision (e.g., which may include
older revision numbers and newer revision numbers).

FIG. 14 is a flowchart illustrating an example of catalog-
ing of dispersed storage network (DSN) memory content.
The method begins with step 214 where a processing
module (e.g., of one of the DS processing unit, the storage
integrity processing unit, the DS unit, the user device, the
DS managing unit, and/or a cataloging server) determines a
data object name of a data object to catalog. Such a
determination may be based on one or more of a last
cataloged data object, a new data object received for storage
in the DSN memory, a command, a list, a directory, a user
vault lookup, and/or a predetermination. For example, the
processing module determines to move to the next data
object into a user directory. At step 216, the processing
module determines slice names and operational parameters
of the data object based on the data object name and the user
vault as previously discussed.

The method continues at step 218 where the processing
module retrieves slices from the DSN memory for one or
more data segments where the data segments may be tar-
geted to provide rich information. For example, the process-
ing module targets the first data segments where information
rich headers and descriptors may be located. In another
example, the processing module targets the last data seg-

10

15

20

25

30

35

40

45

50

55

60

65

22

ments where information rich summaries and links may be
located. At step 220, the processing module recreates the one
or more data segments based on the retrieved slices in
accordance with the operational parameters.

The method continues at step 222 where the processing
module determines and saves metadata of the data segment
in the user vault and/or a list linked to the data object name.
Such a determination of the metadata may be based on
searching and finding information related to one or more of
type of data, key words, phrases, lyrics, patterns, people
references, places, things, relationships to other objects, a
priority indicator, a security indicator, a user ID, and a
timestamp. In an example, the metadata determination is
biased by the data type and filename (e.g., video file, text
file, sound file). For example, the processing module
searches for a name of a person when the data type indicates
a text file. In another example, the processing module
searches for a pattern of a face when the data type indicates
a picture file.

At step 224, the processing module determines whether
more metadata is required for this data object based on
comparing the amount of metadata saved so far to a com-
pleteness threshold. In an example, the completeness thresh-
old may require a minimum number of entries in a list of
categories based on the data type or other clarifier. The
processing module may determine that no more metadata is
required when the amount of metadata saved so far is greater
than the completeness threshold in each required category.
The method ends with step 228 when the processing deter-
mines that no more metadata is required.

When more metadata is required, the method continues at
step 226 where the processing module determines another
data segment of the data object to examine. Such a deter-
mination may be based on one or more of how close the
amount of metadata saved so far is to the completeness
threshold, how many data segments are left, what portion of
data segments have been examined, and the categories that
have not reached their completeness thresholds. The method
branches back to step 218.

FIG. 15 is a flowchart illustrating an example of searching
dispersed storage network (DSN) memory. The method
begins at step 230 where a processing module (e.g., of one
of the DS processing unit, the storage integrity processing
unit, the DS unit, the user device, the DS managing unit,
and/or a cataloging server) receives search parameters from
a requester (e.g., a user device). At step 232, the processing
module determines desired data in DSN memory by com-
paring the search parameters for similarities to DSN
memory metadata. In an example, the metadata was previ-
ously stored in a list or user vault. In another example, the
metadata is obtained based on the search parameters. In yet
another example, the metadata is obtained by a combination
of previously stored metadata in a list or user vault and
metadata based on the search parameters. The metadata is
linked to one or more data objects stored as encoded and
sliced data segments.

The method continues at step 234 where the processing
module determines a data object name of the data object
based on a linked list of metadata to data object names for
metadata that is similar to the search parameters and which
data objects may have been examined further so far (as
discussed below). At step 236, the processing module deter-
mines slice names and operational parameters associated
with the data object based on the data object name and the
user vault as previously discussed. At step 238, the process-
ing module retrieves slices from the DSN memory for one
or more data segments based on a lookup of DSN locations

US 9,430,336 B2

23

in a virtual DSN address to physical location table. The
retrieved slices may target data segments such as informa-
tion headers at the beginning of the data object as discussed
previously. At step 240, the processing module decodes the
retrieved slices in accordance with the operational param-
eters to re-create one or more data segments.

The method continues at step 242 where the processing
module determines metadata of the recreated data
segment(s) as previously discussed. At step 244, the pro-
cessing module determines whether the recreated data seg-
ment(s) compares favorably to the search parameters by
comparing the two, which, for example, occurs when the
two substantially include the same or similar information.

When the comparison is not favorable, the method
branches to step 246 where the processing module deter-
mines whether the search has been exhausted of this data
object based on completion of examining substantially all of
the data segments. At step 248, when exhausted, the method
repeats at step 234. When not exhausted, the method con-
tinues at step 250 where the processing module determines
another data segment to examine for this data object. The
processing module may selection another data segment
based on which data segments have been examined so far
and which categories are rich with information (e.g., places,
patterns, names, key words, etc.). The method then repeats
at step 238.

When the comparison of step 244 is favorable, the method
continues at step 252 where the processing module retrieves
slices for the remaining un-retrieved data segments. At step
254, the processing module recreates the data object based
on the previously recreated data segments and the retrieved
slices for the remaining un-retrieved data segments. At step
256, the processing module sends the data object that
matched the search parameters to the requester.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ““associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable

10

15

20

25

30

35

40

45

50

55

60

65

24

comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

While the transistors in the above described figure(s)
is/are shown as field effect transistors (FETs), as one of
ordinary skill in the art will appreciate, the transistors may
be implemented using any type of transistor structure includ-
ing, but not limited to, bipolar, metal oxide semiconductor
field effect transistors (MOSFET), N-well transistors, P-well
transistors, enhancement mode, depletion mode, and zero
voltage threshold (VT) transistors.

The present invention has also been described above with
the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claimed invention.

The present invention has been described, at least in part,
in terms of one or more embodiments. An embodiment of
the present invention is used herein to illustrate the present
invention, an aspect thereof, a feature thereof, a concept
thereof, and/or an example thereof. A physical embodiment
of'an apparatus, an article of manufacture, a machine, and/or
of'a process that embodies the present invention may include
one or more of the aspects, features, concepts, examples, etc.
described with reference to one or more of the embodiments
discussed herein.

The present invention has been described above with the
aid of functional building blocks illustrating the perfor-
mance of certain significant functions. The boundaries of
these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries
could be defined as long as the certain significant functions
are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

What is claimed is:

1. A method for execution by one or more processing
modules of one or more computing devices of a dispersed
storage network (DSN), the method comprises:

a) identifying a data object stored in the DSN, in which
the data object is segmented into a plurality of data
segments and respective data segments are error
encoded to generate a plurality of data slices and the
plurality of data slices are stored in a plurality of
storage devices of the DSN, and in which a threshold
number of data slices of a particular data segment are
needed to reconstruct the particular data segment, the
threshold number of data slices being less than the
plurality of data slices generated for the particular data
segment;

US 9,430,336 B2

25

b) determining a data segment of the data object stored in
the plurality of storage devices of the DSN;

¢) retrieving the threshold number of data slices corre-
sponding to the data segment;

d) regenerating the data segment from the threshold
number of data slices retrieved corresponding to the
data segment;

e) generating metadata from the regenerated data seg-
ment;

f) storing the metadata associated with the data segment;

g) comparing an amount of the stored metadata to a
completeness threshold to determine if additional meta-
data needs to be generated and, when additional meta-
data is required, determining that the metadata does not
include data in at least one of a plurality of categories;

h) determining another data segment of the data object
when the amount of the stored metadata does not meet
the completeness threshold; and

i) repeating ¢), d), e), 1), g) and h) for one or more
additional data segment or segments until a determi-
nation is made that the stored metadata meets the
completeness threshold.

2. The method of claim 1 wherein the metadata corre-
sponding to the data segment includes at least one of: a type
of data, a keyword, a phrase, a pattern, a priority indicator,
a relationship to other data objects, a security indicator, a
user identifier, or a timestamp.

3. The method of claim 1 further comprising:

determining when additional metadata is no longer
required.

4. A dispersed storage (DS) processing unit, having a
hardware processor and memory, for use in a dispersed
storage network (DSN) comprises:

at least one module, operable with the hardware proces-
sor, causes the hardware processor to:

a) identify a data object stored in the DSN;, in which the
data object is segmented into a plurality of data
segments and respective data segments are error
encoded to generate a plurality of data slices and the
plurality of data slices are stored in a plurality of
storage devices of the DSN, and in which a threshold
number of data slices of a particular data segment are
needed to reconstruct the particular data segment, the
threshold number of data slices being less than the
plurality of data slices generated for the particular
data segment;

b) determine a data segment of the data object stored in
the plurality of storage devices of the DSN;

c) retrieve the threshold number of data slices corre-
sponding to the data segment;

d) regenerate the data segment from the threshold
number of data slices retrieved corresponding to the
data segment;

e) generate metadata from the regenerated data seg-
ment;

1) store the metadata associated with the data segment;

g) compare an amount of the stored metadata to a
completeness threshold to determine if additional
metadata needs to be generated and, when additional
metadata is required, determine that the metadata
does not include data in at least one of a plurality of
categories;

h) determine another data segment of the data object
when the amount of the stored metadata does not
meet the completeness threshold; and

5

10

20

30

35

40

45

55

26

i) repeat c), d), e), f), g) and h) for one or more
additional data segment or segments until a deter-
mination is made that the stored metadata meets the
completeness threshold.

5. The DS processing unit of claim 4 wherein the metadata
corresponding to the data segment includes at least one of:
a type of data, a keyword, a phrase, a pattern, a priority
indicator, a relationship to other data objects, a security
indicator, a user identifier, or a timestamp.

6. The DS processing unit of claim 4 wherein the at least
one module, operable with the hardware processor, further
causes the hardware processor to:

determine when additional metadata is no longer required.

7. A non-transitory computer readable storage medium
comprises:

at least one memory section that stores operational
instructions that, when executed by one or more pro-
cessing modules of one or more computing devices of
a dispersed storage network (DSN), causes the one or
more computing devices to:

a) identify a data object previously stored in the DSN,
in which the data object is segmented into a plurality
of data segments and respective data segments are
error encoded to generate a plurality of data slices
and the plurality of data slices are stored in a
plurality of storage devices of the DSN, and in which
a threshold number of data slices of a particular data
segment are needed to reconstruct the particular data
segment, the threshold number of data slices being
less than the plurality of data slices generated for the
particular data segment;

b) determine a data segment of the data object stored in
the plurality of storage devices of the DSN;

c) retrieve the threshold number of data slices corre-
sponding to the data segment;

d) regenerate the data segment from the threshold
number of data slices retrieved corresponding to the
data segment;

e) generate metadata from the regenerated data seg-
ment;

1) store the metadata associated with the data segment;

g) compare an amount of the stored metadata to a
completeness threshold to determine if additional
metadata needs to be generated and, when additional
metadata is required, determine that the metadata
does not include data in at least one of a plurality of
categories;

h) determine another data segment of the data object
when the amount of the stored metadata does not
meet the completeness threshold; and

i) repeat c), d), e), f), g) and h) for one or more
additional data segment or segments until a deter-
mination is made that the stored metadata meets the
completeness threshold.

8. The non-transitory computer readable storage medium
of claim 7 wherein the metadata corresponding to the data
segment includes at least one of: a type of data, a keyword,
aphrase, a pattern, a priority indicator, a relationship to other
data objects, a security indicator, a user identifier, or a
timestamp.

9. The non-transitory computer readable storage medium
of claim 7 wherein the operational instructions, when
executed by the one or more processing modules of the one

US 9,430,336 B2
27 28

or more computing devices of the dispersed storage network
(DSN), further causes the one or more computing devices to:
determine when additional metadata is no longer required.
10. The non-transitory computer readable storage medium
of claim 7 wherein the operational instructions, when 3
executed by the one or more processing modules of the one
or more computing devices of the dispersed storage network
(DSN), further causes the one or more computing devices to:
determine if the metadata does not include data in at least
one of a plurality of categories. 10

#* #* #* #* #*

